

# THREE MONITORING EFFORTS...

- ► 2006-07: Monitoring Living Shoreline Projects
  - ▶ 200+ LS projects were monitored
  - Biological and physical assessment
  - Findings were incorporated into the Living Shorelines Law of Maryland
- ► SAGE Community of Practice (CoP)
  - Post-Superstorm Sandy (2012-till now)
  - Natural Infrastructure Metrics Workgroup
- Resiliency through Restoration Initiative
  - ► 2017- Maryland's efforts
  - Community resiliency projects



# MONITORING LIVING SHORELINE PROJECTS IN

MARYLAND

## **Living Shorelines**

"..... a suite of techniques which can be used to **minimize** coastal erosion and **maintain** coastal process".- MD DNR

Techniques may include the use of fiber coir logs, sills, groins, breakwaters or other natural components used in combination with sand, other natural materials and/or marsh plantings.



These techniques are used to **protect**, **restore**, **enhance** or **create** natural shoreline habitat.

# **ASSESSMENT STUDY**

- Attributes analyzed:
  - ► Marsh erosion
  - ► Structure condition
  - Non-planted vegetation



### **FIELD ASSESSMENT**

- **Bank condition**: Undercut, Slumping or Stable
- ▶ Percentage affected by the Bank condition: 0-25, 25-50, 50-75 or 75-100%.
- Marsh erosion: Percentage of linear feet of the marsh which is being eroded currently: 0-25, 25-50, 50-75 or 75-100%.
- ► Slope stations: measure of the current slope at a particular point.
- ► Slope difference: Conclusion after comparing current and as-built slope
- Structure condition: Poor, fair, Good, Very good and Excellent Sinking or None.
- ► Specific conditions of the structure: Sinking, displacement or none.
- Evaluation: Conclusion after all these considerations: Poor, Fair, Good, Very good or Excellent.





# **BANK EROSION**





# **MARSH EROSION**





No erosion

> 50% erosion

# **STRUCTURE DISPLACEMENT**



Excellent



Displacement

# **NON-PLANTED VEGETATION**



#### Excellent

#### Poor



### **BIOLOGICAL ASSESSMENT**

- To analyze the difference between these shorelines and natural marshes.
- ► To study the effects of living shorelines projects on the biological community.
- Twelve projects were selected from the monitoring study.
- All the sites selected were rated "excellent" in the assessment study.



# **BIOLOGICAL FINDINGS**

- Most predominant species: silver side, bay anchovies, white perch, spot, blue crab, striped bass, mummichog, and grass shrimp.
- The total number of species (population) was not significantly different among the project types.
- The diversity in the system was very high in the sill projects with the window or openings.







#### Out of 177 projects, 131 of them were good or better.

► Maintenance- Crucial for the success of a project.

#### **PROBABLE CAUSES OF DECREASED PERFORMANCE**

- ► Poor engineering and/ construction.
- Poor execution of Plans.
- "Incorrect" planting.
- ► Choice of marsh grasses.
- ► Boat wake.
- ► Lack of maintenance.



# SYSTEMS APPROACH TO GEOMORPHIC ENGINEERING (SAGE)

# COMMUNITY OF PRACTICE'S APPROACH

# NATURAL INFRASTRUCTURE METRICS WORKGROUP (NIM)

- Goal: Develop core metrics that cut across agency missions, supporting efficiencies and knowledge base that demonstrate ability of natural infrastructure as:
- ► Effective
- ► Resilience
- ► Cost Effective
- Audience: agencies, practitioners, academics, and other stakeholders



# NIM APPROACH

#### Evolution of Thinking:

- Develop a set of metrics to measure the success of NI projects (by Agency mission). Metrics would ideally be tested in costbenefit analyses.
- 2. Identify the ecosystem services you (your organization) wants from NI that addresses your agency mission. Then provide the metric.
- 3. Organize metrics by ecosystem services and by landscape feature.



# **NIM SERVICES**

| Ecological     | Provide Habitat; Maintain Biodiversity; Protect TES; Buffer Ocean Acidification                                                                                                                                                                                               |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sociological   | Provide Recreation; Provide & Support Navigation; Produce-Provide Food,<br>Feed, etc.; Provide & Improve Aesthetics; Promote Environmental Justice;<br>Protect Property Value; Protect Cultural Heritage; Provide & Support<br>Education; Provide-Support Scientific Research |
| Hydrological   | Reduce Storm Surge & Flooding; Provide Flood Storage; Attenuate Waves;<br>Provide and Store Groundwater; Reduce Overtopping; Reduce Current - Wave<br>Velocity; Restore Functional Hydrology                                                                                  |
| Geological     | Reduce & Control Erosion; Protect & Enhance Healthy Soils                                                                                                                                                                                                                     |
| Biogeochemical | Improve Water Quality; Sequester & Convert Nutrients; Reduce Hazardous-<br>Toxic Materials                                                                                                                                                                                    |
| Climatological | Regulate Microclimate; Sequester Carbon                                                                                                                                                                                                                                       |
| Other          | Reduce Wildfire Potential; Protect Against Wind Shear; Attenuate Drought                                                                                                                                                                                                      |

31 total [draft] services (intermediate and final) 12 Features



|                           | ECOLOGICAL                                  | SOCIOLOGICAL                     |                                        | HYDROLOGICAL                             |                                    |                       |
|---------------------------|---------------------------------------------|----------------------------------|----------------------------------------|------------------------------------------|------------------------------------|-----------------------|
| Good or Service:          | Maintain Biodiversity                       | Provide Recreation               | Protect Property Value                 | Protect Cultural Heritage                | Reduce Storm Surge &<br>Flooding   | Provide Flood Storage |
| Features                  |                                             |                                  |                                        |                                          | Metrics                            |                       |
| Nearshore Shallow and     |                                             | number of visitors to the site   | number of homes within walking         | social;/cultural value that individuals  | SEAGRASS BEDS: Area of Seagrass    |                       |
| Nearshore Deep (includes  |                                             |                                  | distance that would benefit from open  | place on the resource, which can be      |                                    |                       |
| submerged aquatic         |                                             |                                  | space, which could be assessed using   | valued using a stated preference         |                                    |                       |
| vegetation and/or aquatic | density of each species of species group    |                                  | GIS software                           | method such as contingent valuation or   |                                    |                       |
| vegetation bed both fresh | (individuals/unit area of measurement)      |                                  |                                        | a choice experiment                      |                                    |                       |
| and saline)               | CONNECTIVITY: 1) is connectivty needed      |                                  | change in property values due to an    | cultural indicators can be developed     | SEAGRASS BEDS: species composition |                       |
|                           | and type of connectivity required; 2)       |                                  | increase in natural space, analyzed    | based upon feedback from residents       |                                    |                       |
|                           | importance of the connectivity              |                                  | through a hedonic valuation study      | through focus groups, interviews or      |                                    |                       |
|                           | (area/zone/system) for habitat              |                                  |                                        | surveys. These indicators may fall into  |                                    |                       |
|                           | persistence; 3) importance of the           |                                  |                                        | a variety of categories, such as quality |                                    |                       |
|                           | connectivity (area/zone/system) for         |                                  |                                        | of life, shoreline activities, sense of  |                                    |                       |
|                           | ecosystem service provision; 4)             |                                  |                                        | place, or sommunity well-being and will  |                                    |                       |
|                           | protection of connectivity, including if it |                                  |                                        | vary depending upon habitat type,        |                                    |                       |
|                           | can be protected                            | value that visitors place on the |                                        | project, and relevance to the            |                                    |                       |
|                           |                                             | recreational experience          |                                        | community                                |                                    |                       |
|                           |                                             |                                  | change in property values due to a     |                                          | SEAGRASS BEDS: mean shoot density  |                       |
|                           |                                             |                                  | perceived decrease in flood risk,      |                                          |                                    |                       |
|                           |                                             |                                  | analyzed through a hedonic valuation   |                                          |                                    |                       |
|                           |                                             |                                  | study                                  |                                          |                                    |                       |
|                           |                                             |                                  | change in property values due to an    |                                          | SEAGRASS BEDS: mean shoot height   |                       |
|                           |                                             |                                  | improvement in water clarity, analyzed |                                          |                                    |                       |
|                           |                                             |                                  | through a hedonic valuation study      |                                          |                                    |                       |
|                           |                                             |                                  |                                        |                                          | 0010010000000 P - P - P            |                       |

# MD DNR'S RESILIENCY THROUGH RESTORATION

INITIATIVE

## **COMMON RTR PROJECT GOALS**

- Shoreline Erosion Control
- Protection of Community Infrastructure
- Increase of Marsh Health and Integrity
- Decrease in Presence of Invasive Species
- Increase in Public Access
- ► Increase in Biodiversity



All projects- monitored according to a consistent Before, After, Control, Impact (BACI) monitoring design.

| Goo | al Type | Attribute | Metric                           | Methods                         | Tier  |
|-----|---------|-----------|----------------------------------|---------------------------------|-------|
|     | Core    | Physical  | Structure Positon                | RTK GPS                         | Three |
|     |         |           |                                  | Aerial Photos                   | Two   |
|     |         |           |                                  | Handheld GPS                    | Two   |
|     |         |           |                                  | Distance from Fixed Point       | One   |
|     |         |           | Structure Integrity              | Visual Inspection               | NA    |
|     |         |           | Shoreline Position               | RTK GPS                         | Three |
|     |         |           |                                  | Aerial Photos                   | Two   |
|     |         |           |                                  | Handheld GPS                    | Two   |
|     |         |           |                                  | Distance from Fixed Point       | One   |
|     |         |           | Marsh and Shoreline<br>Elevation | RTK GPS                         | Three |
|     |         |           |                                  | Sprinter Level and Handheld GPS | Two   |
|     |         |           |                                  | Graduated Rod                   | One   |

| Biological | Vegetation<br>Structure | % Cover/m <sup>2</sup> Estimate | Two   |
|------------|-------------------------|---------------------------------|-------|
|            |                         | Stem Height                     | Two   |
|            |                         | Stem Density                    | Three |
|            |                         | General Characterization        | One   |
|            | Vegetation<br>Community | Species Identification          | Three |
|            |                         | General Characterization        | One   |

# **POINTS TO PONDER**

 Efforts should be made to maintain a consistent sampling intensity from project to project.

- Long term transects should be sampled-fall and spring
  - ► 1 year pre-construction;
  - ► At least 3 years post-construction.
- Monitoring should probably be done before and after extreme events (hurricanes, nor'easters, etc) to understand how projects respond



# PARTING REMARKS...

- Agencies and organizations vary with definitions of resilience and mission focus
- Monitoring no funding, no consistency, etc...
- Overarching needs: Performance and costeffectiveness



#### Monitoring is CRITICAL!!

**Bhaskar Subramanian** 

**Program Manager,** 

**NOAA Adaptation Science (AdSci)** 

**E-MAIL:** 

**BHASKAR.SUBRAMANIAN@NOAA.GOV** 

